Time-Resolved Local Loss Analysis of Single- and Two-Blade Pump Flow

Author:

Pesch Andreas1,Skoda Romuald1

Affiliation:

1. Chair of Hydraulic Fluid Machinery, Ruhr University Bochum , Universitätsstr. 150, Bochum 44801, Germany

Abstract

Abstract A method for the evaluation of time-resolved entropy production in isothermal and incompressible flow is presented. It is applied as a postprocessing of the three-dimensional (3D) flow field obtained by time-resolved computational fluid dynamics (CFD) with scale adaptive turbulence modeling. Wall functions for direct and turbulent entropy production are presented for a cell-centered finite volume method, implemented in the open-source software OpenFOAM and validated on channel, asymmetric diffuser, and periodic hill flow. Single- and two-blade centrifugal pump flow is considered for a wide range of load conditions. Results are compared to experimental data. Time-averaged analysis shows essentially the same loss density distribution among pump components for both pumps, with the impeller and volute region contributing the most, especially in off-design conditions. For both pumps, the losses exhibit significant fluctuations due to impeller–volute interactions. The fluctuation magnitude of loss density is in the same range as flowrate fluctuations and much smaller than pressure fluctuation magnitude. For the two-blade pump (2BP), loss fluctuation magnitude is smaller than for the single-blade pump (1BP). Distinct loss mechanisms are identified for different load conditions. Upon blade passage, a promoted or attenuated volute tongue separation is imposed at part or overload, respectively. In between blade passages, a direct connection from pump inlet to the discharge leads to enhanced flowrate and loss density fluctuations. Future work aims at extending this analysis to stronger off-design conditions in multiblade pumps, where stochastic cycle fluctuations occur.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Reference98 articles.

1. Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems;Heat Mass Transfer,2006

2. A Study of Entropy Generation in Fundamental Convective Heat Transfer;ASME J. Heat Mass Transfer-Trans. ASME,1979

3. Second Law Analysis in Heat Transfer;Energy,1980

4. Entropy Generation Through Heat and Fluid Flow;ASME J. Appl. Mech.,1983

5. Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions;Int. J. Heat Mass Transfer,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3