Microscale Morphology Effects of Copper–Graphene Oxide Coatings on Pool Boiling Characteristics

Author:

Jaikumar Arvind1,Rishi Aniket2,Gupta Anju3,Kandlikar Satish G.4

Affiliation:

1. Microsystems Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623 e-mail:

2. Mechanical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623 e-mail:

3. Chemical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623 e-mail:

4. Fellow ASME Mechanical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623; Microsystems Engineering Department, Rochester Institute of Technology, Rochester, NY 14623 e-mail:

Abstract

Enhanced pool boiling heat transfer, with simultaneous increase in critical heat flux (CHF) and heat transfer coefficient (HTC), is desired to improve overall system efficiency and reduce equipment size and cost. This paper focuses on combining graphene oxide (GO) and porous copper particles to generate microstructures based on their ability to enhance HTC, CHF, or both. Three pool boiling performance characteristics based on CHF improvements and wall superheat reductions are identified: Type I—reduction in wall superheat only, type II—increase in CHF only, and type III—increase in CHF with reduction in wall superheat at higher heat fluxes. Specific microscale morphologies were generated using (a) screen-printing and (b) electrodeposition techniques. In type-I, rapid bubble activity due to increased availability of nucleation cavities was seen to influence the reduction in the wall superheats, while no increase in CHF was noted. Roughness-augmented wettability was found to be the driving mechanism in type-II enhancement, while wicking and increased nucleation site density were responsible for the enhancement in type-III. An HTC enhancement of ∼216% in type-I and a CHF improvement of ∼70% in type-II were achieved when compared to a plain copper surface with water. In type-III enhancement, a CHF of 2.2 MW/m2 (1.8× over a plain surface) with a HTC of 155 kW/m2 °C (∼2.4× over a plain surface) was obtained. Furthermore, close correlation between the boiling performance and the microscale surface morphology in these three categories has been identified.

Funder

"Division of Chemical, Bioengineering, Environmental, and Transport Systems"

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3