Intrinsic Heat Transfer Enhancement Mechanisms in Boiling With Nanoscale Surface Features

Author:

Kandlikar Satish G.1

Affiliation:

1. Mechanical Engineering Department, Rochester Institute of Technology , Rochester, NY 14623

Abstract

Abstract Boiling heat transfer results from a number of multiscale phenomena that are activated by the inception of a nucleating bubble that induces motion of the liquid and vapor phases. Heat is transferred by conduction and convection to the liquid from the heated surface, and subsequently by evaporation at different liquid–vapor interfaces. Nanoscale features on the surface lead to boiling heat transfer enhancement by influencing the surface morphology, nucleation characteristics, localized heat transfer processes, motion of the three-phase contact line, growth and departure of the bubble, and liquid flow over the heated surface. This paper discusses the intrinsic mechanisms associated with nanoscale features that are responsible for enhancement in critical heat flux (CHF) and heat transfer coefficient (HTC) in pool boiling. High wettability surfaces provide CHF enhancement through improved bubble dynamics. Improved contact line motion and liquid circulation around a bubble are responsible for enhanced bubble growth rate. High wickability of nanostructures or nanoparticles on the heated surface is able to supply liquid to the evaporating thin film underneath a bubble. Other techniques lead to enhancing heat transfer to liquid through roughness and lateral conduction in high thermal conductivity particles such as graphene and carbon nanotubes. Enhancement in contact line region heat transfer has been effectively utilized at both nano-and microscales. However, for refrigerants, the enhancement with nanoscale features is only modest at best in improving the heat transfer. These mechanisms are discussed in detail and areas for future research are identified.

Publisher

ASME International

Reference80 articles.

1. A New Perspective on Heat Transfer Mechanisms and Sonic Limit in Pool Boiling;ASME J. Heat Mass Transfer-Trans. ASME,2019

2. Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—a Critical Review and Future Directions;Heat Transfer Eng.,2011

3. Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces;Exp. Therm. Fluid Sci.,2015

4. Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces;Exp. Therm. Fluid Sci.,2015

5. Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review;Int. J. Heat Mass Transfer,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3