Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Abstract
Newly obtained local heat transfer data are presented for flow boiling of liquids in two partially heated vertical channels with different offset strip fin geometries operating at low to moderate wall superheat levels. Experiments were conducted in special test sections that permitted direct visual observation of the boiling process while simultaneously measuring the heat transfer coefficient along the channel. Data for which nucleate boiling appeared to be completely suppressed were analyzed together with similar results for other offset fin geometries to assess the effects of channel geometry variations on the two-phase heat transfer coefficient during annular film-flow evaporation. For all geometries considered, the data for annular film-flow evaporation were found to correlate well in terms of modified versions of the F and Martinelli parameters used by Bennett and Chen (1980) to correlate similar data for round tubes. For fin matrices of similar size and configuration, the forced convective component of the two-phase heat transfer coefficient was found to be well represented by a single F-parameter correlation curve. However, F-factor correlations for matrices having significant differences in fin and channel dimensions were found to differ substantially. An approximate superposition method for including the contribution of nucleate boiling to the two-phase heat transfer coefficient at low to moderate wall superheat levels is also proposed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献