Convective Boiling in Vertical Channels With Different Offset Strip Fin Geometries

Author:

Mandrusiak G. D.1,Carey V. P.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Newly obtained local heat transfer data are presented for flow boiling of liquids in two partially heated vertical channels with different offset strip fin geometries operating at low to moderate wall superheat levels. Experiments were conducted in special test sections that permitted direct visual observation of the boiling process while simultaneously measuring the heat transfer coefficient along the channel. Data for which nucleate boiling appeared to be completely suppressed were analyzed together with similar results for other offset fin geometries to assess the effects of channel geometry variations on the two-phase heat transfer coefficient during annular film-flow evaporation. For all geometries considered, the data for annular film-flow evaporation were found to correlate well in terms of modified versions of the F and Martinelli parameters used by Bennett and Chen (1980) to correlate similar data for round tubes. For fin matrices of similar size and configuration, the forced convective component of the two-phase heat transfer coefficient was found to be well represented by a single F-parameter correlation curve. However, F-factor correlations for matrices having significant differences in fin and channel dimensions were found to differ substantially. An approximate superposition method for including the contribution of nucleate boiling to the two-phase heat transfer coefficient at low to moderate wall superheat levels is also proposed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3