Identification of the Effect of Mass Flow Rate and Hydrogen to Hydrocarbon Ratio on the Thermal Performance of a Shell and Tube Heat Exchanger – An Industrial Case Study

Author:

Sayoud Nassim,Kermiche Messaoud,Touati Houcine

Abstract

In various industrial processes such as petroleum refineries, crude oil must be heated to the required temperature. Here a study of a heat exchanger problem of a catalytic naphtha reforming unit of an SKIKDA refinery (RA1K) is carried out. In this unit the feed (naphtha and recycle gas) is required to enter the first reactor of the reaction section at 471℃, while the feed inlet temperature at the reactor is only 450℃. This problem appeared after starting the unit with a mass flow of 60% of the naphtha. The essential device for heating the charge before entering the reactor is shell-and-tube heat exchanger. In the present study, the Kern method is used to check the heat exchanger in the design and experimental cases. The Aspen HYSYS software has been used to study the influence of various naphtha mass flow rates on the thermal performance of a heat exchanger. The outlet feed temperature was examined for each mass flow rate of naphtha (i.e., 60, 70, 80, 90 and 100%). The simulation results show the important role of the studied parameters in the thermal performance enhancement of heat exchanger, where the case of a mass flow of 60% of the naphtha, the temperature 471℃, provided for by the design, is obtained with an H2/HC ratio of 4.68.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3