Microflow-Enhanced Bubble Dynamics Along With Gradient Porous Surfaces

Author:

Lin Cheng-Hui1,Won Yoonjin1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697

Abstract

Abstract Boiling heat transfer has been a popular topic for decades because of its ability to remove a significant amount of thermal energy while maintaining a low wall superheat during the liquid phase change. Such boiling mechanisms can be tailored by engineering new boiling substrates through surface wettability modification and/or microscale feature installation. Here, we create new types of heterogeneous boiling surfaces that integrate vertical gradient micropores on macroscale fins by using a template-free electrodeposition method. The gradient morphology and corresponding gradient wettability simultaneously enable bubble nucleation on the top pores and capillary wicking through the bottom pores. With these unique wetting characteristics, we find that the gradient pores installed at the trench bottom demonstrate the most significant boiling enhancement in critical heat flux and heat transfer coefficients by 160% and 600%, respectively. This enhancement can be attributed to the microflow-enhanced nature of bubble departures around the fins while isolating bubble nucleation and liquid supply through gradient pores. These results provide fundamental insights into boiling mechanisms using porous media and the potential for future works that can optimize the design of multidimensional heterogeneous surfaces to engineer flow patterns and boiling mechanisms accordingly.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference67 articles.

1. Recent Advances in High-Flux, Two-Phase Thermal Management;ASME J. Thermal Sci. Eng. Appl.,2013

2. Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations;ASME J. Electron. Packag.,2011

3. Assessment of High-Heat-Flux Thermal Management Schemes;IEEE Trans. Compon. Packag. Technol.,2001

4. A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification;ASME J. Heat Transfer-Trans. ASME,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3