Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics

Author:

Ma H.1,Zhang Q.2,He L.3,Wang Z.1,Wang L.1

Affiliation:

1. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

2. Department of Mechanical Engineering and Aeronautics, School of Engineering and Mathematical Sciences, City, University of London, Northampton Square, London EC1V 0HB, UK e-mail:

3. Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK e-mail:

Abstract

A basic attribute for turbine blade film cooling is that coolant injected should be largely passively convected by the local base flow. However, the effective working of the conventional wisdom may be compromised when the cooling injection strongly interacts with the base flow. Rotor blade tip of a transonic high-pressure (HP) turbine is one of such challenging regions for which basic understanding of the relevant aerothermal behavior as a basis for effective heat transfer/cooling design is lacking. The need to increase our understanding and predictability for high-speed transonic blade tip has been underlined by some recent findings that tip heat transfer characteristics in a transonic flow are qualitatively different from those at a low speed. Although there have been extensive studies previously on squealer blade tip cooling, there have been no published experimental studies under a transonic flow condition. The present study investigates the effect of cooling injection on a transonic squealer tip through a closely combined experimental and computational fluid dynamics (CFD) effort. The experimental and computational results as presented in Part I have consistently revealed some distinctive aerothermal signatures of the strong coolant-base flow interactions. In this paper, as Part II, detailed analyses using the validated CFD solutions are conducted to identify, analyze, and understand the causal links between the aerothermal signatures and the driving flow structures and physical mechanisms. It is shown that the interactions between the coolant injection and the base over-tip leakage (OTL) flow in the squealer tip region are much stronger in the frontal subsonic region than the rear transonic region. The dominant vortical flow structure is a counter-rotating vortex pair (CRVP) associated with each discrete cooling injection. High HTC stripes on the cavity floor are directly linked to the impingement heat transfer augmentation associated with one leg of the CRVP, which is considerably enhanced by the near-floor fluid movement driven by the overall pressure gradient along the camber line (CAM). The strength of the coolant-base flow interaction as signified by the augmented values of the HTC stripes is seen to correlate to the interplay and balance between the OTL flow and the CRVP structure. As such, for the frontal subsonic part of the cavity, there is a prevailing spanwise inward flow initiated by the CRVP, which has profoundly changed the local base flow, leading to high HTC stripes on the cavity floor. On the other hand, for the rear high speed part, the high inertia of the OTL flow dominates; thus, the vortical flow disturbances associated with the CRVP are largely passively convected, leaving clear signatures on the top surface of the suction surface rim. A further interesting side effect of the strong interaction in the frontal subsonic region is that there is considerable net heat flux reduction (NHFR) in an area seemingly unreachable by the injected coolant. The present results have confirmed that this is due to the large reduction in the local HTC as a consequence of the upstream propagated impact of the strong coolant-base flow interactions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3