Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
Author:
Kwak Jae Su1, Han Je-Chin1
Affiliation:
1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123
Abstract
Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.
Publisher
ASME International
Subject
Mechanical Engineering
Reference27 articles.
1. Han, J. C., Dutta, S., and Ekkad, S. V., 2000, Gas Turbine Heat Transfer and Cooling Technology, Taylor & Francis, New York. 2. Metzger, D. E., Bunker, R. S., and Chyu, M. K., 1989, “Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel,” ASME J. Heat Transfer, 111, pp. 73–79. 3. Chyu, M. K., Moon, H. K., and Metzger, D. E., 1989, “Heat Transfer in the Tip Region of Grooved Turbine Blades,” ASME J. Turbomach., 111, pp. 131–138. 4. Heyes, F. J. G., Hodson, H. P., and Dailey, G. M., 1991, “The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades,” ASME Paper 91-GT-135. 5. Yang, T. T., and Diller, T. E., 1995, “Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade,” ASME Paper 95-WA/HT-29.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|