Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part I: Adiabatic Effectiveness Measurements

Author:

Christophel J. R.1,Thole K. A.1,Cunha F. J.2

Affiliation:

1. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

2. Pratt & Whitney, United Technologies Corporation, East Hartford, Connecticut 06108

Abstract

Abstract Durability of turbine blade tips has been and continues to be challenging, particularly since increasing turbine inlet temperatures is the driver for improving turbine engine performance. As a result, cooling methods along the blade tip are crucial. Film-cooling is one typically used cooling method whereby coolant is supplied through holes placed along the pressure side of a blade. The subject of this paper is to evaluate the adiabatic effectiveness levels that occur on the blade tip through blowing coolant from holes placed near the tip of a blade along the pressure side. A range of blowing ratios was studied whereby coolant was injected from holes placed along the pressure side tip of a large-scale blade model. Also present were dirt purge holes on the blade tip, which is part of a commonly used blade design to expel any large particles present in the coolant stream. Experiments were conducted in a linear cascade with a scaled-up turbine blade whereby the Reynolds number of the engine was matched. This paper, which is Part 1 of a two part series, compares adiabatic effectiveness levels measured along a blade tip, while Part 2 combines measured heat transfer coefficients with the adiabatic effectiveness levels to assess the overall cooling benefit of pressure side blowing near a blade tip. The results show much better cooling can be achieved for a small tip gap compared with a large tip gap with different flow phenomena occurring for each tip gap setting.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3