Affiliation:
1. City, University of London, London, United Kingdom
Abstract
Abstract
A detailed loss assessment of an axial turbine stage operating with a supercritical carbon dioxide (sCO2) based mixture, namely titanium tetrachloride (CO2-TiCl4 85-15%), is presented. To assess aerodynamic losses, computational fluid dynamics (CFD) simulations are conducted using a geometry generated using mean-line design equations which is part of the work delivered to the SCARABEUS project [1]. The CFD simulations are 3D steady state and employ a number of turbulence models to investigate various aerodynamic loss mechanisms. Two categories of turbulence models are used: Eddy Viscosity and Reynold’s Stress models (RSM). The Eddy Viscosity models are the k-ε, k-ε RNG, k-ω, k-ω SST and k-ω Generalized while the RSM models are BSL, LRR, w-RSM and k-ε EARSM. The comparison between different turbulence models showed minor deviations in mass-flow rate, power output and blade loading while significant deviations appear in the loss coefficients and the degree of reaction. It is noted that the k-ε model gives the highest loss coefficients and the lowest isentropic efficiencies while most of the RSM models indicate higher efficiencies and lower loss coefficients. At off-design conditions a sensitivity study revealed that the k-ε RNG model records the sharpest drop in the isentropic efficiency of 8.24% at low mass flowrate reaching 30% off-design. The efficiency sensitivity is found to be less for the other tested models getting 3.1% drop in efficiency for the LRR RSM model.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献