Efficient aerodynamic optimization of turbine blade profiles: an integrated approach with novel HDSPSO algorithm

Author:

Yan Cheng,Kang EnziORCID,Liu Haonan,Li HanORCID,Zeng NianyinORCID,You Yancheng

Abstract

PurposeThis paper delves into the aerodynamic optimization of a single-stage axial turbine employed in aero-engines.Design/methodology/approachAn efficient integrated design optimization approach tailored for turbine blade profiles is proposed. The approach combines a novel hierarchical dynamic switching PSO (HDSPSO) algorithm with a parametric modeling technique of turbine blades and high-fidelity Computational Fluid Dynamics (CFD) simulation analysis. The proposed HDSPSO algorithm introduces significant enhancements to the original PSO in three pivotal aspects: adaptive acceleration coefficients, distance-based dynamic neighborhood, and a switchable learning mechanism. The core idea behind these improvements is to incorporate the evolutionary state, strengthen interactions within the swarm, enrich update strategies for particles, and effectively prevent premature convergence while enhancing global search capability.FindingsMathematical experiments are conducted to compare the performance of HDSPSO with three other representative PSO variants. The results demonstrate that HDSPSO is a competitive intelligent algorithm with significant global search capabilities and rapid convergence speed. Subsequently, the HDSPSO-based integrated design optimization approach is applied to optimize the turbine blade profiles. The optimized turbine blades have a more uniform thickness distribution, an enhanced loading distribution, and a better flow condition. Importantly, these optimizations lead to a remarkable improvement in aerodynamic performance under both design and non-design working conditions.Originality/valueThese findings highlight the effectiveness and advancement of the HDSPSO-based integrated design optimization approach for turbine blade profiles in enhancing the overall aerodynamic performance. Furthermore, it confirms the great prospects of the innovative HDSPSO algorithm in tackling challenging tasks in practical engineering applications.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3