Integrated Aerodynamic and Structural Blade Shape Optimization of Axial Turbines Operating With Supercritical Carbon Dioxide Blended With Dopants

Author:

Abdeldayem Abdelrahman S.1,White Martin T.1,Paggini Andrea2,Ruggiero Marco2,Sayma Abdulnaser I.1

Affiliation:

1. Thermo-Fluids Research Centre, School of Science & Technology, City, University of London , London EC1V 0HB, UK

2. Turbomachinery & Process Solutions , Baker Hughes, Via Felice Matteucci, Firenze 50127, Italy

Abstract

Abstract Within this study, the blade shape of a large-scale axial turbine operating with sCO2 blended with dopants is optimized using an integrated aerodynamic-structural three-dimensional (3D) numerical model, whereby the optimization aims at maximizing the aerodynamic efficiency whilst meeting a set of stress constraints to ensure safe operation. Specifically, three candidate mixtures are considered, namely, CO2 blended with titanium tetrachloride (TiCl4), hexafluorobenzene (C6F6), or sulfur dioxide (SO2), where the selected blends and boundary conditions are defined by the EU project, SCARABEUS. A single passage axial turbine numerical model is setup and applied to the first stage of a large-scale multistage axial turbine design. The aerodynamic performance is simulated using a 3D steady-state viscous computational fluid dynamic (CFD) model while the blade stress distribution is obtained from a static structural finite element analysis simulation (FEA). A genetic algorithm is used to optimize parameters defining the blade angle and thickness distributions along the chord line while a surrogate model is used to provide fast and reliable model predictions during optimization using a genetic aggregation response surface. The uncertainty of the surrogate model, represented by the difference between the surrogate model results and the CFD/FEA model results, is evaluated using a set of verification points and is found to be less than 0.3% for aerodynamic efficiency and 1% for both the mass-flow rate and the maximum equivalent stresses. The comparison between the final optimized blade cross section has shown some common trends in optimizing the blade design by decreasing the stator and rotor trailing edge thickness, increasing the stator thickness near the trailing edge, and decreasing the rotor thickness near the trailing edge and decreasing the rotor outlet angle. Further investigations of the loss breakdown of the optimized and reference blade designs are presented to highlight the role of the optimization process in reducing aerodynamic losses. It has been noted that the performance improvement achieved through shape optimization is mainly due to decreasing the endwall losses with both the stator and rotor passages.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3