Wake–Wake Interaction and Its Potential for Clocking in a Transonic High-Pressure Turbine

Author:

Hummel Frank1

Affiliation:

1. Institute of Propulsion Technology, German Aerospace Center (DLR), Go¨ttingen, Germany

Abstract

Two-dimensional unsteady Navier–Stokes calculations of a transonic single-stage high-pressure turbine were carried out with emphasis on the flow field behind the rotor. Detailed validation of the numerical procedure with experimental data showed excellent agreement in both time-averaged and time-resolved flow quantities. The numerical timestep as well as the grid resolution allowed the prediction of the Ka´rma´n vortex streets of both stator and rotor. Therefore, the influence of the vorticity shed from the stator on the vortex street of the rotor is detectable. It was found that certain vortices in the rotor wake are enhanced while others are diminished by passing stator wake segments. A schematic of this process is presented. In the relative frame of reference, the rotor is operating in a transonic flow field with shocks at the suction side trailing edge. These shocks interact with both rotor and stator wakes. It was found that a shock modulation occurs in time and space due to the stator wake passing. In the absolute frame of reference behind the rotor, a 50-percent variation in shock strength is observed according to the circumferential or clocking position. Furthermore, a substantial weakening of the rotor suction side trailing edge shock in flow direction is detected in an unsteady flow simulation when compared to a steady-state calculation, which is caused by convection of upstream stator wake segments. The physics of the aforementioned unsteady phenomena as well as their influence on design are discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3