Evaluation of the Interaction Losses in a Transonic Turbine HP Rotor/LP Vane Configuration

Author:

Jennions I. K.1,Adamczyk J. J.2

Affiliation:

1. G. E. Aircraft Engines, Cincinnati, OH 44135

2. NASA Lewis Research Center, Cleveland, OH 44135

Abstract

Transonic turbine rotors produce shock waves, wakes, tip leakage flows, and other secondary flows that the downstream stators have to ingest. While the physics of wake ingestion and shock interaction have been studied quite extensively, few ideas for reducing the aerodynamic interaction losses have been forthcoming. This paper aims to extend previously reported work performed by GE Aircraft Engines in this area. It reports on both average-passage (steady) and unsteady three-dimensional numerical simulations of a candidate design to shed light on the interaction loss mechanisms and evaluate the design. The results from these simulations are first shown against test data for a baseline configuration to engender confidence in the numerical approach. Simulations with the proposed newly designed rotor are then performed to show the trade-offs that are being made in such designs. The new rotor does improve the overall efficiency of the group and physical explanations are presented based on examining entropy production.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3