The Effect of Manufacturing Variations on Unsteady Interaction in a Transonic Turbine

Author:

Clark John P.1,Beck Joseph A.2,Kaszynski Alex A.3,Still Angela3,Ni Ron-Ho4

Affiliation:

1. Mem. ASME Turbomachinery Branch, Turbine Engine Division, Aerospace Systems Directorate, Air Force Research Laboratory, 1864 4th Street, Wright-Patterson AFB, OH 45433 e-mail:

2. Mem. ASME AFRL/RXMS, Wright-Patterson AFB, OH 45433

3. Mem. ASME Universal Technology Co., Dayton, OH 54532

4. Mem. ASME AeroDynamic Solutions, Inc., Danville, CA 94526

Abstract

This effort focuses on the comparison of unsteadiness due to as-measured turbine blades in a transonic turbine to that obtained with blueprint geometries via computational fluid dynamics (CFD). A Reynolds-averaged Navier–Stokes flow solver with the two-equation Wilcox turbulence model is used as the numerical analysis tool for comparison between the blueprint geometries and as-manufactured geometries obtained from a structured light optical measurement system. The nominal turbine CFD grid data defined for analysis of the blueprint blade were geometrically modified to reflect as-manufactured turbine blades using an established mesh metamorphosis algorithm. The approach uses a modified neural network to iteratively update the source mesh to the target mesh. In this case, the source is the interior CFD surface grid while the target is the surface blade geometry obtained from the optical scanner. Nodes interior to the CFD surface were updated using a modified iterative spring analogy to avoid grid corruption when matching as-manufactured part geometry. This approach avoids the tedious manual approach of regenerating the CFD grid and does not rely on geometry obtained from coordinate measurement machine (CMM) sections, but rather a point cloud representing the entirety of the turbine blade. Surface pressure traces and the discrete Fourier transforms (DFT) thereof from numerical predictions of as-measured geometries are then compared both to blueprint predictions and to experimental measurements. The importance of incorporating as-measured geometries in analyses to explain deviations between numerical predictions of blueprint geometries and experimental results is readily apparent. Further analysis of every casting produced in the creation of the test turbine yields variations that one can expect in both aero-performance and unsteady loading as a consequence of manufacturing tolerances. Finally, the use of measured airfoil geometries to reduce the unsteady load on a target blade in a region of interest is successfully demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3