Influence of Blade Loading Profile on Wake Dynamics in High-Pressure Turbine Cascades

Author:

Luymes Benjamin T.1,An Qiang1,Steinberg Adam M.2,Zhang Xuefeng3,Vandeputte Thomas3

Affiliation:

1. Institute for Aerospace Studies, University of Toronto, Toronto, ON M3H 5T6, Canada

2. Institute for Aerospace Studies, University of Toronto, Toronto, ON M3H 5T6, Canada e-mail:

3. Global Research Center, General Electric, Niskayuna, NY 12309

Abstract

The influences of blade loading profile on wake convection and wake/wake interaction were studied in two different blade designs for high-pressure (HP) turbines (front-loaded (FL) and aft-loaded (AL)), installed in linear cascades. A high-speed moving bar (HSMB) apparatus replicated wake shedding, and a closed loop wind tunnel produced engine-relevant Mach numbers (Ma = 0.7) and Reynolds numbers (Re = 3 × 105). The FL blades had approximately 10% greater total pressure loss when operated with unsteady wake passage. Phase conditioned particle image velocimetry (PIV) measurements were made in the aft portion of the blade channel and downstream of the blade trailing edge. The turbulence kinetic energy (TKE) in the wake was approximately 30% higher for the FL blades when the wake entered the measurement field-of-view. The pressure field in the upstream region of the FL blade design is believed to induce high magnitude strain rates—leading to increased TKE production—and more aggressively turn and dilate the unmixed wake—leading to increased mixing related losses. The higher TKE for the FL blades largely dissipated, being approximately equal to the AL wake by the time the wake reached the end of the blade passage. The interaction of the convected wake with the wake from the blade trailing edge caused periodic vortex shedding at the second harmonic of the convected wake frequency. This interaction also modulated the strength of the trailing edge wake. However, little difference was found in the modulation amplitudes between different cases due to similar strengths of the convected wakes in this region. The higher wake TKE in the upstream portion of the blade channel for the FL blades, therefore, is expected to be the cause of the higher total pressure loss.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Mechanical Engineering

Reference15 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in axial turbine blade profile aerodynamics;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3