Primary/Leakage Flow Interaction in a Pump Stage

Author:

Baskharone E. A.1,Wyman N. J.1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University College Station, TX 77843-3123

Abstract

Abstract The finite-element analysis of the combined primary and leakage flow streams in a centrifugal pump is presented. To date, this computational model provides the most accurate “zeroth-order” flow field for rotordynamic calculations, short of analyzing the entire flow field on a fully three-dimensional basis. In formulating the problem, the shaft work is modeled via the angular momentum it imparts to the primary flow stream across the impeller blade region. In casting the boundary conditions, special attention is paid to the multi-connectivity of the newly-contoured computational domain in such a way to avoid over-specification of the problem. The analysis is applied to a typical pump stage with a face seal being part of the leakage passage. The numerical results are then compared to the outcome of the existing lower-order analysis where the impeller subdomain was totally extracted.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Centrifugal Compressors;Principles of Turbomachinery in Air-Breathing Engines;2023-10-19

2. Leakage Flow Mechanism of Gap Seal Structure of Oil well Pump with Rectangular Groove;Chemistry and Technology of Fuels and Oils;2020-05

3. Effect of clearance jet on aerodynamic performance of centrifugal fan;IOP Conference Series: Materials Science and Engineering;2019-10-01

4. Influences of wear-ring clearance leakage on performance of a small-scale pump-turbine;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2019-07-30

5. Numerical investigations on effect of wear-ring clearance on performance of a submersible well pump;Advances in Mechanical Engineering;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3