Influences of wear-ring clearance leakage on performance of a small-scale pump-turbine

Author:

Yan Jianru12ORCID,Zuo Zhitao12,Guo Wenbin12,Hou Hucan1,Zhou Xin1,Chen Haisheng12ORCID

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China

Abstract

Wear-ring clearance leakage would affect performance of pump-turbine significantly. In this paper, the variation of the leakage and efficiency of flat ring seal and labyrinth seal are numerically studied on one pump-turbine when the width of clearance is 0.2 mm and 0.5 mm. The result shows that the effect of leakage flow cannot be neglected. The pump-turbine performance affected by leakage in turbine mode is more than that in pump mode at the same sealing structure and width of clearance. Each component’s proportion of total pressure loss hardly varies with flow rate at pump mode, which is opposite to that at turbine mode. Leakage does not change proportionally with system flow rate. When the width of clearance decreases to 0.2 mm, the leakage is reduced obviously because the maximum entropy occurs in the front pump chamber. The mixing of leakage flow and mainstream at impeller inlet at pump mode will increase the total pressure and decrease the flow angle and relative flow angle. Finally, it reduces the impeller’s work capacity.

Funder

Chinese Academy of Sciences Device Research & Manufacturing Program

National Natural Science Foundation of China

Newton Advanced Fellowship of the Royal Society

International Partnership Program, Bureau of International Cooperation of Chinese Academy of Sciences

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3