Numerical investigations on effect of wear-ring clearance on performance of a submersible well pump

Author:

Shi Weidong1,Gao Xiongfa1,Zhang Qihua1,Zhang Desheng1,Ye Daoxing2

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China

2. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, China

Abstract

A typical submersible well pump was investigated in this article. The whole flow field of submersible well pump was numerically simulated by computational fluid dynamics software. The influence of clearance of wear-rings on the external characteristic and internal flow field was analyzed through comparing the calculation results with experimental results. The result of the numerical simulation shows that changing clearance of front wear-ring has a greater impact on pump performances than changing clearance of back wear-ring, and the head and efficiency of pump decrease with the increase in the size of clearance. Especially when the size of clearance is larger than 0.5 mm, decreasing becomes more obvious. When the front and back wear-ring size of the clearance comes to 1.0 mm, the efficiency decreases from the highest point of 75.31% to 65.44% at rated flow, and the head of pump decreases about 3.5 m. When the size of clearance is 0.2 mm, reverse-flow will appear in the front shroud cavity of the impeller, and leakage from back wear-ring through the balance hole into the impeller, which has a little influence on the flow field of the impeller inlet.

Funder

Funding support from the Priority Academic Program Development of Jiangsu Higher Education Institutions

Supported by the Open Research Subject of Key Laboratory of Fluid and Power Machinery(Xihua University), Ministry of Education

Industry Academia Research and Prospective Joint Research Project of Jiangsu Province

the Graduate Innovation Project of Jiangsu Province in China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3