Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurements—Part I: Showerhead Effects

Author:

Cutbirth J. Michael1,Bogard David G.2

Affiliation:

1. William B. Morgan Large Cavitation Channel, Naval Surface Warfare Center, Carderock Division, Memphis, TN 38113

2. Mechanical Engineering Department, University of Texas at Austin, Austin, TX 78712

Abstract

The goal of this study was to determine how showerhead blowing on a turbine vane leading edge affects of the performance of film cooling jets farther downstream. An emphasis was placed on measurements above the surface, i.e., flow visualization, thermal field, and velocity field measurements. The film cooling performance on the pressure side of a simulated turbine vane, with and without showerhead blowing, was examined. Results presented in this paper are for low mainstream turbulence; high mainstream turbulence effects are presented in the companion paper. At the location of the pressure side row of holes, the showerhead coolant extended a distance of about 3d from the surface (d is the coolant hole diameter). The pressure side was found to be subjected to high turbulence levels caused by the showerhead injection. Results indicate a greater dispersion of the pressure side coolant jets with showerhead flow due to the elevated turbulence levels.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3