Comparison of RANS and Detached Eddy Simulation Modeling Against Measurements of Leading Edge Film Cooling on a First-Stage Vane

Author:

Ravelli S.1,Barigozzi G.1

Affiliation:

1. Department of Engineering and Applied Sciences, University of Bergamo, Marconi Street 5, Dalmine, BG 24044, Italy e-mail:

Abstract

The performance of a showerhead arrangement of film cooling in the leading edge region of a first-stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45 deg toward the tip. The blowing ratios tested are BR = 2.0, 3.0, and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of thermochromic liquid crystals (TLC) technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the computational fluid dynamics (CFD) calculations were conducted by simulating the whole vane. Within the Reynolds-averaged Navier–Stokes (RANS) framework, the very widely used realizable k–ε (Rke) and the shear stress transport k–ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e., Rke, was selected for running detached eddy simulation (DES) at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise directions, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C = 0.2.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3