An Investigation of Soot Volume Fraction and Temperature for Natural Gas Laminar Diffusion Flame Established From a Honeycomb Gaseous Burner

Author:

Ibrahim M. M.1,Attia A.2,Emara A.3,Moneib H. A.3

Affiliation:

1. Department of Mechanical Power Engineering, Faculty of Engineering, Mataria, Helwan University, Cairo 11718, Egypt e-mail:

2. Department of Mechanical Power Engineering Faculty of Engineering, Mataria, Helwan University, Cairo 11646, Egypt e-mail:

3. Department of Mechanical Power Engineering Faculty of Engineering, Mataria, Helwan University, Cairo 11718, Egypt e-mail:

Abstract

The present work is an experimental investigation that aims at studying the effects of different fuel additives on the soot volume fraction and temperature in a well-defined vertical laminar diffusion flame configuration, and these additives include a diluent (argon) that suppresses the formation of soot and a soot promoter (acetylene) that accelerates and intensifies the soot formation. Three different measuring techniques are employed throughout the whole experimental program, namely, a high-resolution digital camera (up to 3.7 fps) for flame visualization, a bare wire Pt/Pt-13% rhodium fine thermocouple of 15 µm wire diameter for measuring the mean gas temperature inside the flame region and a laser system for measuring the in-flame soot volume fraction. The results indicated that the soot inception zone (deep dark parabolic shape) occurs at the immediate vicinity of the burner. The soot oxidation zone is characterized by high luminosity, and it begins after the fuel is largely consumed. The increased percentages of acetylene in the fuel mixture would lead to extending the length of this zone to ultimately occupy the whole visible flame length, where the luminosity becomes independent of the amount of soot. The temperature within the soot surface growth zone (orange color) continues increasing but at a lower rate that reflects the domination of diffusion combustion mode. Limited partial oxidation may be anticipated within this zone due to the relatively high temperature, which is not high enough to cause luminosity of the soot particles.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3