Large Eddy Simulation Studies on Effects of Soot Productivity in a Momentum Dominated Strained Diffusion Jet Flames

Author:

N.H. Mohamed Ibrahim1,Udayakumar M.2,Balasubramanian Dhinesh34,Tran Viet Dung5,Truong Thanh Hai6,Nguyen Van Nhanh7

Affiliation:

1. National Institute of Technology Department of Mechanical Engineering , Tiruchirappalli, Tamil Nadu 620015 , India

2. National Institute of Technology Department of Mechanical Engineering, , Tiruchirappalli, Tamil Nadu 620015 , India

3. Khon Kaen University Mechanical Engineering, Faculty of Engineering; Center for Alternative Energy, Research and Development, , Khon Kaen 40002 , Thailand ;

4. Mepco Schlenk Engineering College Department of Mechanical Engineering, , Sivakasi, Tamil Nadu 626005 , India

5. Ho Chi Minh City University of Transport PATET Research Group, , Ho Chi Minh City 72300 , Vietnam

6. Ho Chi Minh City University of Transport PATET Research Group, , Ho Chi Minh City , Vietnam

7. HUTECH University Institute of Technology, , Ho Chi Minh City , Vietnam

Abstract

Abstract The present numerical study is to determine the soot volume fraction, rate of soot nucleation, rate of coagulation, rate of surface growth, and rate of surface oxidation for flame configurations having the fuel mixture composition of C2H4: H2: N2 (63.4: 4.7: 31.9% by mass) along with air. The Brookes–Moss–Hall and OH oxidation radical is coupled with the combustion and P−1 radiation model. The inputs needed for this numerical study to determine soot volume fraction are maintained the same as the earlier experimental conditions. The hyperbolic function in the governing models is interpolated with quadratic upwind interpolation for convective kinetics, diffusion function with second-order upwind in space, and bounded second-order implicit in time. A suitable pressure implicit method for splitting operators, and a pressure–velocity coupler are also incorporated to evaluate pressure to satisfy continuity. The above governing models are solved using the ILU method with a unity Courant–Friedrichs–Lewy number. It is observed that along the axial direction, the flame with 12,900 s−1 shows higher rate of soot nucleation and rate of soot coagulation compared with the flame having lower strain rate. Also, the highest strain rate flame shows the lowest rate of soot surface growth, and also the rate of soot oxidation is the least.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3