A Comparative Study of Thermal, Luminous, and Infrared Radiation Characteristics of Natural gas Flame in the Presence of Alkali, Alkali-Earth, and Transition Metallic Solution Additives

Author:

Pourhoseini S. H.1,Naghizadeh N.2

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Gonabad, Gonabad 0098, Iran

2. Department of Analytical Chemistry, Faculty of Sciences, University of Gonabad, Gonabad 9193735961, Iran

Abstract

Abstract Experiments were performed to find out the effect of alkali, alkali-earth, and transition metallic additives on thermal, luminous, IR, and total radiative properties of natural gas flame. A total of 25 mL of 0.5 M alkali salts of NaNO3 and KNO3, alkali-earth salts of Ca(NO3)2, Ba(NO3)2, and Sr(NO3)2 and transition nitrate salts of Cu(NO3)2 and Mn(NO3)2 (Merck company) were prepared, and flame tests were done on each solution by using a Bunsen burner with the equivalence ratio of 1.05, which is close to the condition of stoichiometric air–fuel mixing. The optical characteristics of flame were measured in visible and infrared radiation (IR) spectrums by a TES-1332A luminance meter, BOMEM FTIR, and IR flame photography technique. Also, the total radiation was gauged by a HFP01 sensor. The results indicated that, in general, due to the increased rate of nucleation of intermediate soot particles, the flame in the presence of alkali metal additives has higher total, luminous, and IR radiation than in the presence of other metal additives. Also, the metallic additives do not significantly change the flame temperature. The results also revealed that although all metallic additives enhance the luminous radiation of flame, which is due to chemiluminescence phenomenon or atomic emission, luminous radiation of metal additives is negligible in comparison with their radiation in IR wavelengths. Furthermore, the results show that the boiling temperature of metallic salt solutions has a greater impact on flame luminosity than their ionization energy does.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3