Optimal Second-Law Efficiency for a Brayton Cycle With an Internal Heat Source

Author:

Woodward J. B.1

Affiliation:

1. Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109-2145

Abstract

Net work of an endoreversible Brayton cycle and its second-law efficiency are examined for a heat source (hot air) that is initially at a temperature typical of adiabatic and stoichiometric combustion. That temperature is taken to be well above maximum cycle temperature. When heat is transferred to the cycle via a heat exchanger, maximum work per unit of heat source mass and per unit of heat source availability (second-law efficiency) are found to occur at a cycle pressure ratio that differs from the pressure ratio for maximum cycle first-law efficiency. When the heat source is internal, i.e., a fraction of the cycle working fluid, maximum work per unit of heat source mass is found to occur at the pressure ratio found for the external source; on the other hand, maximum work per unit of heat source availability is found to occur at the highest possible cycle pressure ratio, which is the same point at which cycle first-law efficiency is a maximum.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power and entropy generation of an extended irreversible Brayton cycle: optimal parameters and performance;Journal of Physics D: Applied Physics;2006-07-21

2. The Influence of Quantum Degeneracy on the Performance of a Fermi Brayton Engine;Open Systems & Information Dynamics;2004-03

3. An ecological exergy analysis for an irreversible Brayton engine with an external heat source;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2000-01-01

4. Heat transfer—a review of 1995 literature;International Journal of Heat and Mass Transfer;1999-08

5. Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems;Journal of Non-Equilibrium Thermodynamics;1999-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3