Optimum Heat Power Cycles for Specified Boundary Conditions

Author:

Ibrahim O. M.1,Klein S. A.1,Mitchell J. W.1

Affiliation:

1. Solar Energy Laboratory, University of Wisconsin–Madison, Madison, WI 53706

Abstract

Optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η=1−TL,in/φTH,in where φ is a factor relating the entropy changes during heat rejection and heat addition.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Chambadal Model with New Optimization Results;Entropy;2024-01-31

2. From Equilibrium Thermodynamics to Irreversible Thermodynamics;Advances in Thermodynamics and Circular Thermoeconomics;2023-12-22

3. Thermodynamics and Optimization of Reverse Cycle Engines;Refrigerators, Heat Pumps and Reverse Cycle Engines;2023-07-21

4. Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory;Physica A: Statistical Mechanics and its Applications;2023-05

5. Efficient power analysis and five-objective optimization for a simple endoreversible closed Brayton cycle;Case Studies in Thermal Engineering;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3