Modeling Time Variations of Boiler Efficiency

Author:

Rehan Ahmed1,Habib Mohamed A.2,Elshafei Moustafa3,Alzaharnah Iyad T.4

Affiliation:

1. Systems Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia e-mail:

2. Department of Mechanical Engineering, KACST TIC on CCS, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia e-mail:

3. Department of Systems Engineering, King Fahd University of Petroleum and Minerals, KFUPM Box 405, Dhahran 31261, Saudi Arabia e-mail:

4. Dhahran Technovalley, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia e-mail:

Abstract

Boiler's efficiency is one of the important performance indicators of boiler. To keep track of operation cost, efficiency needs to be calculated with adequate accuracy by employing effective mathematical tools. In this work, a new modification in conventional mathematical formulation of efficiency is presented based on time-varying efficiency using time-varying operational variables of boiler. This modification was accomplished using indirect method of efficiency by applying experimental data of variables for certain time span. Moreover a second-order dynamic model of flue gas temperature (FGT) has been derived to construct the mathematical formulation of efficiency only in terms of available inputs. The resulting input–output-based model proved to be in quite agreement with efficiency calculated from experimental data. After modeling, influence of variations in air to fuel ratio (AFR) and fuel flow rate (FFR) upon efficiency has been discussed and it has been shown that time-varying efficiency covers deeper aspect of dynamic relation between efficiency and other input of boiler especially AFR and FFR. Moreover, it has been established that efficiency interacts with the dynamics of boiler, and in this respect, a dynamic relation between combustion process and boiler dynamics has been constructed via efficiency.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3