Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors

Author:

Tang Hui1,Owen J. Michael1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Abstract

Abstract The blade clearance in aero-engine compressors is mainly controlled by the radial growth of the compressor discs, to which the blades are attached. This growth depends on the radial distribution of the disc temperature, which in turn is determined by the heat transfer inside the internal rotating cavity between adjacent discs. The buoyancy-induced convection inside the cavity is significantly weaker than that associated with the forced convection in the external mainstream flow, and consequently radiation between the cavity surfaces cannot be ignored in the calculation of the disc temperatures. In this paper, both the Monte Carlo Ray-Trace (MCRT) method and the view factor (VF) method are used to calculate the radiative flux when the temperatures of the discs, shroud, and inner shaft of the compressor vary radially and axially. The Monte Carlo Ray-Trace method is computationally expensive, but it is able to incorporate the effect of complex geometries on radiation. The view factor method is quick to compute and, although the derivation becomes complicated when geometrical details are considered, it can be used as a first check of the effect of radiation in compressor cavities. Given distributions of surface temperatures, the blackbody and gray body heat fluxes were calculated for the discs, shroud, and inner shaft in two experimental compressor rigs and in a simulated compressor stage. For the experimental rigs, although the effect of radiation was relatively small for the case of large Grashof numbers, the relative effect of radiation increases as Gr (and consequently the convective heat transfer) decreases. For the simulated compressor, with a pressure ratio of 50:1 for state-of-the-art aircraft engines, radiation could have a significant effect on the disc temperature and consequently on the blade clearance; the effect is predicted to be more prominent for the next generation of aircraft engines with pressure ratios up to 70:1.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3