Application of Deep Reinforcement Learning to Thermal Control of Space Telescope

Author:

Xiong Yan12,Guo Liang3,Tian Defu12

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Space Robot Engineering Center, Changchun, Jilin 130033, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Space Robot Engineering Center, Changchun, Jilin 130033, China

Abstract

Abstract With the development of deep space exploration technology, thermal control systems for space telescopes are becoming increasingly complex, leading to the key parameters of conventional thermal control systems are difficult to adjust online automatically. To achieve these adjustments, this paper provided detailed verification of the application of deep reinforcement learning to space telescope thermal control from three perspectives: thermophysical modeling, intelligent sensing-based radiator, and online self-tuning of thermal control parameters. This paper presents a high-speed and high-precision thermophysical modeling strategy in matlab/simulink with better computational efficiency than conventional approaches. And an intelligent sensing-based radiator is proposed that can realize autonomous regulation of the radiating cold plate by sensing the external space environment and the thermal load inside the spacecraft. A strategy for online self-tuning of the thermal control parameters based on deep reinforcement learning is also proposed. Theoretical and experimental results show that deep reinforcement learning thermal control (DRLPID) can achieve temperature control accuracy of 0.05 °C. The steady-state errors in the simulations were reduced by 22.7%, 37.4%, and 47.4% when compared with the reinforcement learning proportional–integral–derivative (PID), the neural network PID, and the fuzzy PID, respectively. The experimental steady-state errors were reduced by 20.4%, 32.5%, and 42.7%, respectively.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3