Thermal Management of Single- and Dual-Tank Fuel-Flow Topologies Using an Optimal Control Strategy

Author:

Huang P. G.1,Doman D. B.2

Affiliation:

1. Professor Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435 e-mail:

2. Principal Aerospace Engineer, Air Force Research Laboratory, Control Design and Analysis Branch, 2210 Eighth Street, Ste. 21, WPAFB, OH 45433-7531 e-mail:

Abstract

The effect of fuel topology and control on thermal endurance of aircraft using fuel as a heat transfer agent was studied using an optimal dynamic solver (OPT). The dynamic optimal solutions of the differential equations governing the heat transfer of recirculated fuel flows for single- and dual-tank arrangements were obtained. The method can handle sudden jumps of operating conditions across different operating zones during mission and/or situations when control parameters have reached their physical limits. Although this method is robust in providing an optimal control strategy to prolong thermal endurance of aircrafts, it is not ideal for practical application because the method required iterative procedures to solve expensive nonlinear equations. The linear quadratic regulator (LQR), the feedback controller, can be derived by linearizing the adjoint equations at trim points to offer a simple control strategy, which can then be implemented directly in the feedback control hardware. The solutions obtained from both OPT and LQR were compared, and it was found two solutions were almost identical except in regions having sudden jump of operation conditions. Finally, a comparison between single- and dual-tank arrangements was made to demonstrate the importance of the flow topology. The study shows the dual-tank arrangement allows flexibility in how energy is managed and can release energy faster than a single-tank topology and hence provides improved aircraft thermal endurance.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference4 articles.

1. Fuel Flow Topology and Control for Extending Aircraft Thermal Endurance;J. Thermophys. Heat Transfer,2018

2. X-37 Space Vehicle: Starting a New Age in Space Control,2001

3. Kuhn, H. W., and Tucker, A. W., 1951, “Nonlinear Programming,” Second Berkeley Symposium, pp. 481–492.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3