Optimal Synthesis of Unconventional Links for Modular Reconfigurable Manipulators

Author:

Dogra Anubhav1,Sekhar Padhee Srikant1,Singla Ekta1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India

Abstract

Abstract Customization of manipulators having unconventional parameters and link shapes have gained attention to accomplish nonrepetitive tasks in a given cluttered environment. Adaptive modular and reconfigurable designs are being used to achieve customization and have provided time and cost-effective solutions. Major challenges are associated to provide the systematic approach on the design and realization of modular components considering connectivity and integration. This article focuses on the architectural synthesis of the modular links, optimized with respect to the dynamic torques while following a prescribed set of trajectories. The design methodology is proposed as an Architecture Prominent Sectioning−k strategy, which assumes a modular link as an equivalent system of k number of point masses, performing optimization to minimize the joint torques and map the resulting re-adjusted point masses into a possible architecture. The proposed strategy is general and can be applied to planar or spatial manipulators with n−DoF even with nonparallel and nonperpendicular jointed configurations. The design of optimal curved links is realized resulting from the optimized solution considering the dynamics of the modular configurations over primitive trajectories. The proposed modular library of unconventional curved link modules with joint modules have shown lesser requirement of the joint torques compared to the conventional straight links.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm Approach;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Rational Linkages: From Poses to 3D-Printed Prototypes;Springer Proceedings in Advanced Robotics;2024

3. Joint Space Trajectory Controller for Modular Reconfigurable Manipulator;Advances In Robotics - 6th International Conference of The Robotics Society;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3