High Heat Flux Boiling Heat Transfer for Laser Diode Arrays

Author:

Bandhauer Todd M.1,Bevis Taylor A.1

Affiliation:

1. Colorado State University, Fort Collins, CO

Abstract

The principle limit for achieving higher brightness of laser diode arrays is thermal management. State of the art laser diodes generate heat at fluxes in excess of 1 kW cm−2 on a plane parallel to the light emitting edge. As the laser diode bars are packed closer together, it becomes increasingly difficult to remove large amounts of heat in the diminishing space between neighboring diode bars. Thermal management of these diode arrays using conduction and natural convection is practically impossible, and, therefore, some form of forced convective cooling must be utilized. Cooling large arrays of laser diodes using single-phase convection heat transfer has been investigated for more than two decades by multiple investigators. Unfortunately, either large fluid temperature increases or very high flow velocities must be utilized to reject heat to a single phase fluid, and the practical threshold for single phase convective cooling of laser diodes appears to have been reached. In contrast, liquid-vapor phase change heat transport can occur with a negligible increase in temperature and, due to a high enthalpy of vaporization, at comparatively low mass flow rates. However, there have been no prior investigations at the conditions required for high brightness edge emitting laser diode arrays: >1 kW cm−2 and >10 kW cm−3. In the current investigation, flow boiling heat transfer at heat fluxes up to 1.1 kW cm−2 was studied in a microchannel heat sink with plurality of very small channels (45 × 200 microns) using R134a as the phase change fluid. The high aspect ratio channels (4.4:1) were manufactured using MEMS fabrication techniques, which yielded a large heat transfer surface area to volume ratio in the vicinity of the laser diode. To characterize the heat transfer performance, a test facility was constructed that enabled testing over a range of fluid saturation temperatures (15°C to 25°C). Due to the very small geometric features, significant heat spreading was observed, necessitating numerical methods to determine the average heat transfer coefficient from test data. This technique is crucial to accurately calculate the heat transfer coefficients for the current investigation, and it is shown that the analytical approach used by many previous investigations requires assumptions that are inadequate for the very small dimensions and heat fluxes observed in the present study. During the tests, the calculated outlet vapor quality exceeded 0.6 and the base heat flux reached a maximum of 1.1 kW cm−2. The resulting experimental heat transfer coefficients are found to be as large a 58.1 kW m−2 K−1 with an average uncertainty of ±11.1%, which includes uncertainty from all measured and calculated values, required assumptions, and geometric discretization error from meshing.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3