Decomposition Techniques for the Efficient Analysis of Area-Array Packages

Author:

Deshpande Anand M.1,Subbarayan Ganesh1

Affiliation:

1. Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309-0427

Abstract

The goals of the present paper are to develop and demonstrate an efficient technique for the design/analysis of electronic packages through a novel decomposition procedure. The ultimate utility of these techniques is to enable quick and accurate design decisions at system-level, during package development by enabling one to develop a reusable library of modules in a manner analogous to the object-oriented programming paradigm of modern computer science. The methodology allows simultaneous design as well as domain decomposition and is based on a nonlinear optimization procedure that ensures the approximate satisfaction of the principle of virtual work. The developed procedure is demonstrated on a 5×5 hypothetical arrayed package. It is shown that with the use of the decomposed solution methodology, approximately 350 percent improvement in computational efficiency is achieved at an accuracy loss of only 6 percent. A windows-based graphical program founded on an artificial neural network model for predicting life given shear and axial deformation of solder joints was also developed. This neural network encapsulates the results of finite element analyses and predicts life for a given loading in a fraction of a second. [S1043-7398(00)00201-2]

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3