Optimization of Cold Aisle Isolation Designs for a Data Center With Roofs and Doors Using Slits

Author:

Gondipalli Srujan1,Sammakia Bahgat1,Bhopte Siddarth1,Schmidt Roger2,Iyengar Madhusudan K.2,Murray Bruce1

Affiliation:

1. State University of New York at Binghamton, Binghamton, NY

2. IBM, Poughkeepsie, NY

Abstract

Data centers are facilities that house large numbers of computer servers that typically dissipate high power. With the rapid increase in the heat flux of such systems, their thermal management represents an economic and environmental challenge that needs to be addressed [2]. Considering the trends of increasing heat loads and heat fluxes, the focus for users is in providing adequate airflow through the equipment at a temperature that meets the manufacturers’ requirements. Data centers house IT equipment in racks typically arranged in rows which face one another. Alternating cold and hot aisles are formed and this pattern is repeated across the data center. This approach helps to separate cold and hot air streams; but this does not always suffice in the separation of cold and hot air. The mixing of hot rack exhaust air with cold supply air, short-circuiting of cold air to the coolers and the recirculation of hot air to racks’ inlet are the common phenomena that lead to thermal inefficiencies in a typical data center. Typically in a raised floor data center, increase in rack inlet air temperature is seen because of the infiltration of hot air into the cold aisle from the top (ceiling of the cold aisle) and from edges or sides. Infiltration can be reduced to a certain extent if cold aisles are isolated from ceiling and hot aisles using partially or fully closed doors with slits to manage the airflow. The key is to redistribute the cold air entering the cold aisle along with any infiltration such that the overall average temperature at the rack inlets is below a predefined level. In this paper, different designs were generated with the criteria of achieving no hotspots, a relatively low pressure drop across the servers and low velocity of the air in the cold aisle based on an actual data center model. Several designs are proposed that meet all of the defined constraints.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the Mechanism of Temperature Rise in a Data Center With Cold Aisle Containment;Journal of Electronic Packaging;2019-05-08

2. Cold Aisle Containment;Air Flow Management in Raised Floor Data Centers;2015-11-24

3. A Brief Overview of Recent Developments in Thermal Management in Data Centers;Journal of Electronic Packaging;2015-09-10

4. Room Level Modeling of Air Flow in a Contained Data Center Aisle;Journal of Electronic Packaging;2014-02-14

5. Thermal Characteristics of Open and Contained Data Center Cold Aisle;Journal of Heat Transfer;2013-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3