Relating Metabolism Suppression and Nucleation Probability During Supercooled Biopreservation

Author:

Consiglio Anthony N.1,Rubinsky Boris1,Powell-Palm Matthew J.1

Affiliation:

1. Department of Mechanical Engineering, University of California at Berkeley , Berkeley, CA 94720

Abstract

Abstract Aqueous supercooling provides a method by which to preserve biological matter at subfreezing temperatures without the deleterious effects of ice formation. The extended longevity of the preserved biologic is a direct result of a reduction in the rate of metabolism with decreasing temperature. However, because the nucleation of ice from a supercooled solution is a stochastic process, supercooled preservation carries the risk of random ice nucleation. Theoretical supercooled biopreservation research to date has largely treated these biological and thermophysical phenomena separately. Here, we apply a statistical model of stochastic ice nucleation to demonstrate how the possible reduction in metabolic rate is inherently related to supercooling stability (i.e., the likelihood of ice nucleation). We develop a quantitative approach by which to weigh supercooling stability versus potential metabolic reduction, and further show how the stability–metabolism relationship varies with system size for two assumed modes of nucleation. Ultimately, this study presents a generalizable framework for the informed design of supercooled biopreservation protocols that considers both phase transformation kinetics and biochemical or biophysical kinetics.

Funder

National Science Foundation

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference25 articles.

1. Time–Temperature Management Along the Food Cold Chain: A Review of Recent Developments;Compr. Rev. Food Sci. Food Saf.,2017

2. The Promise of Organ and Tissue Preservation to Transform Medicine;Nat. Biotechnol.,2017

3. Bioinspired Materials and Technology for Advanced Cryopreservation;Trends Biotechnol.,2022

4. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: From Concept to Reality;Stem Cell Rev. Rep.,2021

5. Revival of Spermatozoa After Vitrification and Dehydration at Low Temperatures;Nat.,1949

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3