A Human-Inspired Method for Point-to-Point and Path-Following Navigation of Mobile Robots

Author:

Heidari F.1,Fotouhi R.2

Affiliation:

1. Mechanical Engineering Department, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N 5A9, Canada

2. Mem. ASME Mechanical Engineering Department, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N 5A9, Canada e-mail:

Abstract

This paper describes a human-inspired method (HIM) and a fully integrated navigation strategy for a wheeled mobile robot in an outdoor farm setting. The proposed strategy is composed of four main actions: sensor data analysis, obstacle detection, obstacle avoidance, and goal seeking. Using these actions, the navigation approach is capable of autonomous row-detection, row-following, and path planning motion in outdoor settings. In order to drive the robot in off-road terrain, it must detect holes or ground depressions (negative obstacles) that are inherent parts of these environments, in real-time at a safe distance from the robot. Key originalities of the proposed approach are its capability to accurately detect both positive (over ground) and negative obstacles, and accurately identify the end of the rows of bushes (e.g., in a farm) and enter the next row. Experimental evaluations were carried out using a differential wheeled mobile robot in different settings. The robot, used for experiments, utilizes a tilting unit, which carries a laser range finder (LRF) to detect objects, and a real-time kinematics differential global positioning system (RTK-DGPS) unit for localization. Experiments demonstrate that the proposed technique is capable of successfully detecting and following rows (path following) as well as robust navigation of the robot for point-to-point motion control.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. Visual Navigation for Mobile Robots: A Survey;J. Intell. Rob. Syst. Theory Appl.,2008

2. Integration of Multiple Sensor Spaces With Limited Sensing Range and Redundancy;Int. J. Rob. Autom.,2013

3. General Vegetation Detection Using an Integrated Vision System;Int. J. Rob. Autom.,2013

4. Obtaining Obstacle Information by an Omnidirectional Stereo Vision System;Int. J. Rob. Autom.,2009

5. Robot Design and Testing for Greenhouse Applications;Biosyst. Eng.,2006

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3