Experimental Investigation of the Transient Patterns and Pressure Evolution of Tip Leakage Vortex and Induced-Vortices Cavitation in an Axial Flow Pump

Author:

Xi Shen1,Desheng Zhang1,Bin Xu1,Yongxin Jin1,Weidong Shi2,van Esch B.P.M. (Bart)3

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China

2. School of Mechanical Engineering, Nantong University, Nantong 226019, China

3. Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands

Abstract

Abstract Cavitating flow is extremely complex in axial and mixed flow pumps, resulting in several adverse effects on pump performance. In this paper, the tip leakage vortex (TLV) cavitation patterns in an axial flow pump model were studied based on high-speed photography and transient pressure measurements. The TLV cavitation morphology and transient development of the induced suction-side-perpendicular cavitating vortices (SSPCVs) were investigated at multi-operating conditions. The time-domain of the transient pressure was employed to clarify the relationship between the tip cavitation and the pressure field. The results showed that cavitation inception occurred earlier with an unstable TLV cavitation shape at part-load conditions. Cavitation was more intense with a decrease of the cavitation number, presenting a larger area of triangular cavitation with the shedding of SSPCV. The inception of SSPCV was attributed to the tail of the shedding cavitation cloud originally attached to the suction surface (SS) of the blade, moving in the direction of the adjacent blade perpendicular to the SS, resulting in a flow blockage. With a further decrease in pressure, the SSPCVs grew in size and strength, accompanied by a rapid degradation in performance of the pump. The cavitation images and the corresponding circumferential pressure distributions showed that the lowest pressure point coincided with the SS corner. After this position, the pressure fluctuated as the cavitation intensity changed. The transient characteristics of SSPCV are a basis for revealing the instability mechanism of its evolution in the axial flow pump.

Funder

National Natural Science Foundation of China

China Scholarship Council

National Key Research and Development Program

Innovation Project for Postgraduates of Jiangsu Province

333Project of Jiangsu Province

Six Talent Peaks Project in Jiangsu Province

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3