Energy dissipation mechanism of tip-leakage cavitation in mixed-flow pump blades

Author:

Li WeiORCID,Li HaomingORCID,Liu MingjiangORCID,Ji LeileiORCID,Agarwal Ramesh K.1ORCID,Jin ShengyangORCID

Affiliation:

1. Department of Mechanical Engineering & Materials Science, Washington University in St. Louis 5 , St. Louis, Missouri 63130, USA

Abstract

Tip leakage flow is one of the significant factors influencing the internal flow stability of mixed-flow pumps, and in severe cases, it can lead to channel blockage and energy loss. In order to gain a deeper understanding of the energy dissipation mechanism induced by tip leakage vortex cavitation, this study is based on the Wray–Agarwal (WA) turbulence model and the homogeneous flow model, investigating the cavitation flow characteristics of mixed-flow pumps. Additionally, the entropy production theory is employed to evaluate the energy losses within the mixed-flow pump and analyze the components of energy loss in the impeller and guide vanes. The research results reveal that with increasing cavitation intensity, the low-pressure region at the leading edge of the blade extends toward the trailing edge, influencing the static pressure distribution on the blade's pressure side. Leakage flow and the spatial distribution of leakage vortices move closer to the suction side of the blade with increasing cavitation intensity. Cavitation primarily affects the energy losses in the impeller region, with turbulent dissipation being the main source of energy loss. High turbulent dissipation zones are concentrated at the trailing edge of the blade, correlating with recirculation vortices and trailing-edge vortices. This study provides theoretical insights with practical implications for enhancing the cavitation performance of mixed-flow pumps, offering valuable guidance for design and operation.

Funder

The Key International Cooperative research of National Natural Science Foundation of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

The Sixth "333 High Level Talented Person Cultivating Project" of Jiangsu Province

"Blue Project" in Jiangsu Colleges and Universities

"Belt and Road" Innovation Cooperation Project of Jiangsu Province

Independent Innovation Fund Project of Agricultural Science and Technology in Jiangsu Province

National Natural? Science Foundation? of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3