Abstract
PurposeThis study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy production theory to visualize the vortex at the top of the impeller as well as quantitatively analyzing the energy loss caused by the vortex at the top of the impeller. By combining the two methods, the two are well verified with each other that the stacking problem of the vortex at the top of the impeller and the location of the energy loss caused by the vortex are consistent with the vortex location. Such a method can reveal the problem of vortex buildup at the top of the lobe well, and provide a novel guidance idea for improving the performance of high-speed fuel pumps.Design/methodology/approachBased on CFD numerical simulation and analysis, this study mainly uses LCS and entropy production theory to visualize the top vortex of the impeller. Through the combination of the two methods, the accumulation problem of the top vortex of the impeller and the location of the energy loss caused by the vortex can be well revealed.Findings(1) The CFD numerical simulation analysis of the high-speed fuel pump is carried out, and the test is conducted to verify the numerical simulation results. The inlet and outlet pressure difference? P is used as the validation index, and the error analysis shows that the error between numerical simulation and test results is within 10%, which meets our requirements. Therefore, we carry out the next analysis with the help of CFD numerical simulation. By analyzing the full working condition simulation, its inlet and outlet differential pressure? P and efficiency? Are evaluated. It is found that its differential pressure decreases with the flow rate and its efficiency reaches its maximum at Qv = 9.87 L/s with a maximum efficiency of 78.32%. (2) We used the LCS in the analysis of vortices at the top of the impeller blades of a high-speed fuel pump. One of the metrics used to describe the LCS in fluid dynamics is the FTLE. The high FTLE region represents the region with the highest and fastest particle trajectory stretching velocity in the fluid flow. We performed a cross-sectional analysis of the FTLE field on the different height surfaces of the impeller on 25% Plane, 50% Plane, and 75% Plane, respectively. And a quarter turn of the rotor rotation was analyzed as a cycle divided into 8 moments. It is found that on 25% Plane, the vortex at the top of the lobe is not obvious, but there are high FTLE values on the shroud surface. On 50% Plane, the lobe top vortex is relatively obvious and the number of vortices is three. The vortex pattern remains stable with the rotating motion of the rotor. At 75% Plane, the lobe top vortex is more visible and its number of vortices increases to about 5 and the vortex morphology is relatively stable. The FTLE ridges visualize the vortex profile. This is a good guide for fluid dynamics analysis. (3) At the same time, we use the entropy production theory to quantitatively analyze the energy loss, and define the entropy production rate Ep. Through the entropy production analysis of the impeller shroud surface and the suction surface of the pressure surface of the blades at eight moments, we find that the areas of high energy loss are mainly concentrated in the leading and trailing edges of the blades as well as in the shroud surface close to the leading edge of the blades, and the value of the entropy production rate is up to 106 W/m3/K. The areas of high energy loss in the leading edge of the blades as well as the trailing edge show a curved arc, and the energy loss is decreasing as it moves away from the shroud surface and closer to the hub surface. The high energy loss areas at the leading and trailing edges of the blades are curved, and the energy loss decreases as they move away from the shroud surface and closer to the hub surface. The energy loss at the pressure surface of the blade is relatively small, about 5 × 105 W/m3/K, which is mainly concentrated near the leading edge of the blade near the shroud surface and the trailing edge of the blade near the hub surface. Such energy loss corresponds to the vortex LCS at the top of the impeller, and the two mirror each other.Originality/valueThis study focuses on the CFD numerical simulation and analysis of the vortex stacking problem at the top of the impeller of a high-speed fuel pump, mainly using LCS and entropy production theory to visualize the vortex at the top of the impeller as well as quantitatively analyzing the energy loss caused by the vortex at the top of the impeller. By combining the two methods, the two are well verified with each other that the stacking problem of the vortex at the top of the impeller and the location of the energy loss caused by the vortex are consistent with the vortex location. Such a method can reveal the problem of vortex buildup at the top of the lobe well, and provide a novel guidance idea for improving the performance of high-speed fuel pumps.