Affiliation:
1. Southwest Forestry University
Abstract
Wood is a material commonly found in nature and is widely used in all professions and industries. Because wood has varied growth cycles and physical properties, there are large differences in its usage and commercial price. In addition, some woods are nationally protected species. Therefore, it is of great importance to accurately identify the type of wood. Traditional wood recognition methods rely on experts and specialized equipment. To facilitate wood recognition, this paper proposes an approach for wood recognition using images. Next, a transfer learning technology was used to extract the textural features of wood, and a global average pooling (GAP) layer was used to reduce the number of features. Finally, the extreme learning machine (ELM) was used for classification. The recognition accuracy of this approach for the Wood Species Dataset was 93.07%, which was higher than the method used by the data provider. This approach had a higher recognition accuracy and a more stable recognition performance than previous approaches.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献