Affiliation:
1. College of Chemistry and Materials Engineering, Zhejiang A&F University, Linan 311300, China
2. School of Mathematics and Computer Science, Wuyi University, Wuyishan 354300, China
Abstract
Traditional nondestructive testing technology for wood defects has a series of problems such as low identification accuracy, high cost, and cumbersome operation, and traditional testing methods cannot accurately show the specific location and size of wood internal defects; it is urgent to explore a new nondestructive testing scheme for wood defects. Aiming at this problem, this paper designs and develops an automatic detection method for wood surface defects based on deep learning algorithm and multicriteria framework. By comparing the performance of different deep learning detection methods on the data set, the advantages and disadvantages of the detection method in this paper are proved. After a series of works, such as the development and optimization of the experimental algorithm, the algorithm proposed meets the requirements in both the detection accuracy and training time.
Subject
General Engineering,General Mathematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献