Abstract
In recent years, due to the shortage of timber resources, it has become necessary to reduce the excessive consumption of forest resources. Non-destructive testing technology can quickly find wood defects and effectively improve wood utilization. Deep learning has achieved significant results as one of the most commonly used methods in the detection of wood knots. However, compared with convolutional neural networks in other fields, the depth of deep learning models for the detection of wood knots is still very shallow. This is because the number of samples marked in the wood detection is too small, which limits the accuracy of the final prediction of the results. In this paper, ResNet-34 is combined with transfer learning, and a new TL-ResNet34 deep learning model with 35 convolution depths is proposed to detect wood knot defects. Among them, ResNet-34 is used as a feature extractor for wood knot defects. At the same time, a new method TL-ResNet34 is proposed, which combines ResNet-34 with transfer learning. After that, the wood knot defect dataset was applied to TL-ResNet34 for testing. The results show that the detection accuracy of the dataset trained by TL-ResNet34 is significantly higher than that of other methods. This shows that the final prediction accuracy of the detection of wood knot defects can be improved by TL-ResNet34.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献