A Transfer Residual Neural Network Based on ResNet-34 for Detection of Wood Knot Defects

Author:

Gao Mingyu,Qi Dawei,Mu Hongbo,Chen JianfengORCID

Abstract

In recent years, due to the shortage of timber resources, it has become necessary to reduce the excessive consumption of forest resources. Non-destructive testing technology can quickly find wood defects and effectively improve wood utilization. Deep learning has achieved significant results as one of the most commonly used methods in the detection of wood knots. However, compared with convolutional neural networks in other fields, the depth of deep learning models for the detection of wood knots is still very shallow. This is because the number of samples marked in the wood detection is too small, which limits the accuracy of the final prediction of the results. In this paper, ResNet-34 is combined with transfer learning, and a new TL-ResNet34 deep learning model with 35 convolution depths is proposed to detect wood knot defects. Among them, ResNet-34 is used as a feature extractor for wood knot defects. At the same time, a new method TL-ResNet34 is proposed, which combines ResNet-34 with transfer learning. After that, the wood knot defect dataset was applied to TL-ResNet34 for testing. The results show that the detection accuracy of the dataset trained by TL-ResNet34 is significantly higher than that of other methods. This shows that the final prediction accuracy of the detection of wood knot defects can be improved by TL-ResNet34.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3