Recognition of Sago Palm Trees Based on Transfer Learning

Author:

Letsoin Sri Murniani AngelinaORCID,Purwestri Ratna ChrismiariORCID,Rahmawan Fajar,Herak DavidORCID

Abstract

Sago palm tree, known as Metroxylon Sagu Rottb, is one of the priority commodities in Indonesia. Based on our previous research, the potential habitat of the plant has been decreasing. On the other hand, while the use of remote sensing is now widely developed, it is rarely applied for detection and classification purposes, specifically in Indonesia. Considering the potential use of the plant, local farmers identify the harvest time by using human inspection, i.e., by identifying the bloom of the flower. Therefore, this study aims to detect sago palms based on their physical morphology from Unmanned Aerial Vehicle (UAV) RGB imagery. Specifically, this paper endeavors to apply the transfer learning approach using three deep pre-trained networks in sago palm tree detection, namely, SqueezeNet, AlexNet, and ResNet-50. The dataset was collected from nine different groups of plants based on the dominant physical features, i.e., leaves, flowers, fruits, and trunks by using a UAV. Typical classes of plants are randomly selected, like coconut and oil palm trees. As a result, the experiment shows that the ResNet-50 model becomes a preferred base model for sago palm classifiers, with a precision of 75%, 78%, and 83% for sago flowers (SF), sago leaves (SL), and sago trunk (ST), respectively. Generally, all of the models perform well for coconut trees, but they still tend to perform less effectively for sago palm and oil palm detection, which is explained by the similarity of the physical appearance of these two palms. Therefore, based our findings, we recommend improving the optimized parameters, thereby providing more varied sago datasets with the same substituted layers designed in this study.

Funder

the Internal Grant Agency (IGA) of the Faculty of Engineering, Czech University of Life Sciences Prague

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3