DPXception: a lightweight CNN for image-based date palm species classification

Author:

Safran Mejdl,Alrajhi Waleed,Alfarhood Sultan

Abstract

IntroductionDate palm species classification is important for various agricultural and economic purposes, but it is challenging to perform based on images of date palms alone. Existing methods rely on fruit characteristics, which may not be always visible or present. In this study, we introduce a new dataset and a new model for image-based date palm species classification.MethodsOur dataset consists of 2358 images of four common and valuable date palm species (Barhi, Sukkari, Ikhlas, and Saqi), which we collected ourselves. We also applied data augmentation techniques to increase the size and diversity of our dataset. Our model, called DPXception (Date Palm Xception), is a lightweight and efficient CNN architecture that we trained and fine-tuned on our dataset. Unlike the original Xception model, our DPXception model utilizes only the first 100 layers of the Xception model for feature extraction (Adapted Xception), making it more lightweight and efficient. We also applied normalization prior to adapted Xception and reduced the model dimensionality by adding an extra global average pooling layer after feature extraction by adapted Xception.Results and discussionWe compared the performance of our model with seven well-known models: Xception, ResNet50, ResNet50V2, InceptionV3, DenseNet201, EfficientNetB4, and EfficientNetV2-S. Our model achieved the highest accuracy (92.9%) and F1-score (93%) among the models, as well as the lowest inference time (0.0513 seconds). We also developed an Android smartphone application that uses our model to classify date palm species from images captured by the smartphone’s camera in real time. To the best of our knowledge, this is the first work to provide a public dataset of date palm images and to demonstrate a robust and practical image-based date palm species classification method. This work will open new research directions for more advanced date palm analysis tasks such as gender classification and age estimation.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-fused convolutional neural network model for fruit image classification;International Journal of Cognitive Computing in Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3