A Deep Learning-Based Model for Date Fruit Classification

Author:

Albarrak KhaliedORCID,Gulzar YonisORCID,Hamid Yasir,Mehmood AbidORCID,Soomro Arjumand BanoORCID

Abstract

A total of 8.46 million tons of date fruit are produced annually around the world. The date fruit is considered a high-valued confectionery and fruit crop. The hot arid zones of Southwest Asia, North Africa, and the Middle East are the major producers of date fruit. The production of dates in 1961 was 1.8 million tons, which increased to 2.8 million tons in 1985. In 2001, the production of dates was recorded at 5.4 million tons, whereas recently it has reached 8.46 million tons. A common problem found in the industry is the absence of an autonomous system for the classification of date fruit, resulting in reliance on only the manual expertise, often involving hard work, expense, and bias. Recently, Machine Learning (ML) techniques have been employed in such areas of agriculture and fruit farming and have brought great convenience to human life. An automated system based on ML can carry out the fruit classification and sorting tasks that were previously handled by human experts. In various fields, CNNs (convolutional neural networks) have achieved impressive results in image classification. Considering the success of CNNs and transfer learning in other image classification problems, this research also employs a similar approach and proposes an efficient date classification model. In this research, a dataset of eight different classes of date fruit has been created to train the proposed model. Different preprocessing techniques have been applied in the proposed model, such as image augmentation, decayed learning rate, model checkpointing, and hybrid weight adjustment to increase the accuracy rate. The results show that the proposed model based on MobileNetV2 architecture has achieved 99% accuracy. The proposed model has also been compared with other existing models such as AlexNet, VGG16, InceptionV3, ResNet, and MobileNetV2. The results prove that the proposed model performs better than all other models in terms of accuracy.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3