Neural Network Based Prediction of Soluble Solids Concentrationin Oriental Melon Using VIS/NIR Spectroscopy

Author:

Kim Sang-Yeon,Hong Suk-Ju,Kim Eungchan,Lee Chang-Hyup,Kim Ghiseok

Abstract

Highlights Non-destructive soluble solids content prediction model for oriental melon was developed based on NIR spectrum data. Not only the classical ML or Neural-Network methods, but also the mixture of both techniques have also been tried. Comparing the various pre-processing methods, the MSC-PLS-ANN model showed the best results. MSC-PLS-ANN model demonstrated 6% of improvement in RMSE score over the PLSR model, which is commonly used in commercial products Abstract. Models for predicting the soluble solids concentration (SSC) of oriental melons were developed and evaluated by applying near infrared spectroscopy and an artificial neural network technique. For the evaluation, a total of 300 oriental melons, both ripe and unripe, were mixed together and sampled. To develop an SSC prediction model, the actual SSC values of specimens having the same spectra as those of the visible/near infrared wavelength bands were measured. The measured spectra were preprocessed using eight methods [Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV), Robust Normal Variate, Savitzky-Golay 1st and 2nd; Min-Max Normalization; Robust Normalization; Standardization], and the SSC prediction model was developed by applying three techniques (Partial Least Squared Regression [PLSR], Artificial Neural Network [ANN], and Convolutional Neural Network [CNN]). Among them, the PLSR technique also applied a Variable Importance in Projection (VIP) method for wavelength selection. Among the PLSR-based SSC prediction models, the SNV-preprocessed PLSR model showed the best SSC prediction performance (RMSEtest, 0.67; R2test, 0.81). Among the ANN-based models, the MSC-preprocessed PLS-ANN model showed the best SSC prediction performance (RMSEtest: 0.63, R2test: 0.83). Among the CNN-based models, the DeepSpectra model was applied, but showed the lowest prediction performance (RMSEtest: 0.79, R2test: 0.74). In conclusion, among the three SSC prediction algorithms tested in this study, the PLS-ANN-based prediction model showed the best SSC prediction performance, which was found to be higher than that of the PLSR-based SSC prediction model applied to the sugar sorters currently used in agricultural products at processing centers. Keywords: Artificial Neural Network, Convolution Neural Network, Korean melon, VIP-PLSR, VIS/NIR spectroscopy.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3