Load–deflection of flexible ring-net barrier in resisting debris flows

Author:

Kong Yong1ORCID,Li Xingyue2,Zhao Jidong3ORCID,Guan Mingfu1ORCID

Affiliation:

1. Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, P. R. China.

2. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, P. R. China.

3. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China.

Abstract

Quantitative understanding of the load–deflection mechanisms of a flexible barrier in intercepting debris flows is critical for barrier design, but remains practically challenging due to the difficulties involved in capturing multi-phase, multi-way interactions. This study employs a physics-based coupled computational fluid dynamics and discrete-element method (CFD–DEM) to simulate a flexible ring-net barrier as a permeable, deformable multi-component system by DEM and model a debris flow as a mixture of discrete particles and a continuous slurry by DEM and CFD, respectively. The CFD–DEM coupling framework offers a unified treatment of in-flow solid–fluid interaction, flow–barrier interaction and interactions among barrier components. Numerical predictions of key flow–barrier interactions and cable forces show reasonable consistency with large-scale experiments. Systematic simulations with varying flow–barrier height ratios ε and flow dynamics are performed to examine the evolving mechanisms of load sharing and transmission and quantify the ε-dependent load–deflection modes. The ratio ε is found to bear a strong, positive correlation with the key barrier response in three typical modes. The post-peak barrier deformations experience shrinkages with ε ≤ 0·6 and expansions when ε > 0·6. This study helps to improve understanding of the load–deflection mechanisms for practical design of flexible barriers in mitigating debris flows.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3