Investigating projectile penetration into immersed granular beds via CFD-DEM coupling

Author:

Lin Jiayu,Zhao TaoORCID,Jiang Mingjing

Abstract

Abstract Projectile penetration into an immersed granular bed is a common phenomenon in both geophysics and engineering, encompassing various scenarios such as immersed crater formation and offshore soil-structure interaction. It involves the complex physical interaction between the fluid and granular materials. In this study, we investigate the dynamics of projectile penetration into a granular bed immersed in a fluid using a coupled computational fluid dynamics and discrete element method (CFD-DEM). The granular bed is composed of polydisperse particles, and the projectile is modeled as a rigid sphere. The morphology of crater formation, the dynamics of the projectile, and the drag force characteristics in immersed cases were studied in detail and compared to the dry scenario. The numerical results show that the final penetration depth of the projectile follows an empirical relation derived from experimental observations, where the falling height and the drag force during penetration obey a power-law function and a modified generalized Poncelet law, respectively. The interstitial fluid not only provides direct drag force, but also enhances the effective drag force of the granular bed by improving its generalized friction and effective viscosity in different configurations. Micro-analyses of the velocity evolution and contact force network in different stages of the fluid–solid interaction were performed to clarify the penetration dynamics. This research provides insights into the mechanisms of projectile penetration and the effects of interstitial fluid on granular media, which are crucial in engineering applications such as offshore anchoring, ball penetration tests in soft sediments, and soil-structure interactions. Graphical Abstract

Funder

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Hainan Provincial Department of Science and Technology

Tongji University

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3