A practical bio-based reversible permeability control for saturated sands

Author:

Hata Toshiro1ORCID

Affiliation:

1. Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama, Japan

Abstract

There is a need for an eco-friendly in situ reversible permeability control that reduces the number of artificial materials used to achieve a saturated sand layer. This study investigates such a control using a method that causes calcite precipitation and decalcification based on the metabolism of carbon sources. This generates carbon dioxide and organic acid and creates and detaches a biofilm using dry yeast and sodium hypochlorite. A pilot test determined the optimal chemical composition for this from a few different concentrations of carbon sources that begin the permeability reduction and recovery process. Following this, the main test (the permeability test) was conducted on a water sample taken from an agricultural area, which was combined with chemicals and dry yeast in a permeameter column. Permeability tests were carried out under three conditions (untreated, treated and treated combined with a biofilm detachment phase). The results suggest that (a) calcite precipitation induced by microbes, combined with bioclogging, can control the reduction in soil permeability and (b) a biofilm remover (sodium hypochlorite) and decalcification based on the organic acid created from the metabolism of carbon sources effectively recover the soil permeability to its initial state.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3