Casein-assisted enhancement of the compressive strength of biocemented sand

Author:

Miyake Masato,Kim Daehyun,Hata ToshiroORCID

Abstract

AbstractAs a soil biomineralization process, casein-assisted enzyme-induced carbonate precipitation (EICP) yielded biocemented specimens with significantly higher compressive strength than specimens cemented by regular or skim-milk-assisted EICP treatments. The compound concentration and curing strategy of casein-assisted EICP were experimentally optimized to maximize the compressive strength of precipitates with low calcium carbonate content. Under the optimized EICP conditions (0.893 M urea, 0.581 M CaCl2, 2.6 g/L urease enzyme, and 38.87 g/L casein), the unconfined compressive strengths reached 2 MPa. The scanning electron micrographs of selected samples provided microscopic evidence that EICP treatments assisted using skim milk and casein impart distinctive strength-enhancement mechanisms. The ammonium ions released from urea hydrolysis created an alkaline environment that makes casein dissociated into the pore water. As the casein-containing pore water became more viscous, the increased contact area with particles facilitated the precipitation of co-bound CaCO3 minerals and casein in the pore water. Casein was identified as a more efficient assisting agent than skim milk for low-level CaCO3 precipitation by EICP treatment.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3