Abstract
AbstractAs a soil biomineralization process, casein-assisted enzyme-induced carbonate precipitation (EICP) yielded biocemented specimens with significantly higher compressive strength than specimens cemented by regular or skim-milk-assisted EICP treatments. The compound concentration and curing strategy of casein-assisted EICP were experimentally optimized to maximize the compressive strength of precipitates with low calcium carbonate content. Under the optimized EICP conditions (0.893 M urea, 0.581 M CaCl2, 2.6 g/L urease enzyme, and 38.87 g/L casein), the unconfined compressive strengths reached 2 MPa. The scanning electron micrographs of selected samples provided microscopic evidence that EICP treatments assisted using skim milk and casein impart distinctive strength-enhancement mechanisms. The ammonium ions released from urea hydrolysis created an alkaline environment that makes casein dissociated into the pore water. As the casein-containing pore water became more viscous, the increased contact area with particles facilitated the precipitation of co-bound CaCO3 minerals and casein in the pore water. Casein was identified as a more efficient assisting agent than skim milk for low-level CaCO3 precipitation by EICP treatment.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献